MATH 20C - Allen - Midterm 2

Show all work. No credit might be given for unsupported answers, even if correct.

Note the magenta color is only a suggestion for the partial credit breakdown. Alternative or complex solutions must necessarily take a more personalized approach

Problem 0 (I point)

Write your name, PID, and section number on the front of your bluebook.
Solution:
Professor, 53014497, C00 (1 point)

Problem I (I0 points)

a) The unit vector $\hat{A}=\left(-\frac{\sqrt{3}}{2}, \frac{1}{2}, 0\right)$, is tangent to the unit sphere given by $x^{2}+y^{2}+z^{2}=1$, at the point $\left(x_{0}, y_{0}, z_{0}\right)=\left(\frac{1}{4}, \frac{\sqrt{3}}{4}, \frac{\sqrt{3}}{2}\right)$. Find another *unit* tangent vector, \hat{B}, orthogonal to \hat{A}.
Solution:
\hat{A} is tangent and therefore orthogonal to the normal
$\vec{n}=\left.\nabla\left(x^{2}+y^{2}+z^{2}\right)\right|_{\left(x_{0}, y_{0}, z_{0}\right)}=\left.(2 x, 2 y, 2 z)\right|_{\left(x_{0}, y_{0}, z_{0}\right)}=2\left(\frac{1}{4}, \frac{\sqrt{3}}{4}, \frac{\sqrt{3}}{2}\right)$.

(3 points)

A vector orthogonal to both \hat{A} and \vec{n} can be found with the cross product: $\vec{B}=\hat{A} \times \vec{n}=\left(\frac{\sqrt{3}}{2}, \frac{3}{2},-1\right)$. Now we just need to normalize:
$\|\vec{B}\|=\sqrt{\vec{B} \cdot \vec{B}}=2$, and therefore: $\frac{1}{\|\vec{B}\|} \vec{B}=\hat{B}=\left(\frac{\sqrt{3}}{4}, \frac{3}{4},-\frac{1}{2}\right)$. Note, the negative: $-\hat{B}$ is also acceptable. (2 points)
b) Find the point (x_{0}, y_{0}, z_{0}) such that the vectors $\vec{A}=(-1,0,8)$ and $\vec{B}=(0,-4,-16)$ are simultaneously tangent to the surface given by $x^{2}-y^{2}+z=1$

Solution:

\vec{A} and \vec{B} are tangent and therefore orthogonal to the normal: $\vec{n}=\left.\nabla\left(x^{2}-y^{2}+z\right)\right|_{\left(x_{0}, y_{0}, z_{0}\right)}=\left(2 x_{0},-2 y_{0}, 1\right)$. (3 points) Orthogonality implies the relations:
$\vec{A} \cdot \vec{n}=0$ and $\vec{B} \cdot \vec{n}=0$, writing it out: $\vec{A} \cdot \vec{n}=-2 x_{0}+8=0 \Rightarrow x_{0}=4$ and $\vec{B} \cdot \vec{n}=8 y_{0}-16=0 \Rightarrow y_{0}=2$.
Now use the relation $x_{0}^{2}-y_{0}^{2}+z_{0}=1$ to find $z_{0}=-11$, and we have: $\left(x_{0}, y_{0}, z_{0}\right)=(4,2,-11)$ (2 points)

Problem 2 (I0 points)

a) During lecture we saw the double product rule, $\left(\frac{\partial x}{\partial y}\right)\left(\frac{\partial y}{\partial x}\right)=1$, and triple product rule $\left(\frac{\partial x}{\partial y}\right)\left(\frac{\partial y}{\partial z}\right)\left(\frac{\partial z}{\partial x}\right)=-1$. Use the contour,
$f(x, y, z, t)=\frac{x y z}{\ln (t)}=1$, to guess what the quadruple product rule is $\left(\frac{\partial x}{\partial y}\right)\left(\frac{\partial y}{\partial z}\right)\left(\frac{\partial z}{\partial t}\right)\left(\frac{\partial t}{\partial x}\right)=$? That is, compute the four different derivatives and take the product (for sake of clarity write each expression resulting from a derivative only in terms of variables x, y, z, and be sure to not change variables until after computing the derivatives)
Solution:
Take the relation $f=1$, and solve for each variable:
$x=\frac{1}{y z} \ln (t), y=\frac{1}{x z} \ln (t), \quad z=\frac{1}{x y} \ln (t), t=e^{x y z}$, and then take derivatives:
$\frac{\partial x}{\partial y}=-\frac{1}{y^{2} z} \ln (t), \frac{\partial y}{\partial z}=-\frac{1}{z^{2} x} \ln (t), \frac{\partial z}{\partial t}=\frac{1}{x y t}, \frac{\partial t}{\partial x}=y z e^{x y z}$, let's re-write them without the $\mathrm{t}:$
$\frac{\partial x}{\partial y}=-\frac{x}{y}, \frac{\partial y}{\partial z}=-\frac{y}{z}, \frac{\partial z}{\partial t}=\frac{1}{x y} e^{-x y z}, \frac{\partial t}{\partial x}=y z e^{x y z}$, and now take the product and everything cancels out: $\left(\frac{\partial x}{\partial y}\right)\left(\frac{\partial y}{\partial z}\right)\left(\frac{\partial z}{\partial t}\right)\left(\frac{\partial t}{\partial x}\right)=1$ (7 points)
b) Use the contour of the n-variable function $f\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} x_{i}=1$, to determine the n-tuple product rule, $\prod_{i=1}^{n}\left(\frac{\partial x_{i}}{\partial x_{i+1}}\right)=$?
(Note we will interpret a subscript of $n+1$ as 1 in the product formula as in "clock arithmetic", recall Π means product and Σ means sum, hint: don't overthink it)
Solution:
Take the relation $f=1$, and solve for each variable, let's solve for the generic $x_{i}=1-\sum_{j \neq i} x_{j}$. Notice that x_{i+1} appears on the right as a lonely monomial, so the derivative is easy: $\frac{\partial x_{i}}{\partial x_{i+1}}=-1$ for any i. Therefore the product rule:
$\prod_{i=1}^{n}\left(\frac{\partial x_{i}}{\partial x_{i+1}}\right)=(-1)^{n}$ (3 points)
Notice that this reproduces the double product rule $(n=2):\left(\frac{\partial x}{\partial y}\right)\left(\frac{\partial y}{\partial x}\right)=(-1)^{2}=1$
And the triple product rule $(\mathrm{n}=3):\left(\frac{\partial x}{\partial y}\right)\left(\frac{\partial y}{\partial z}\right)\left(\frac{\partial z}{\partial x}\right)=(-1)^{3}=-1$
And part a) the quadruple product rule $(n=4):\left(\frac{\partial x}{\partial y}\right)\left(\frac{\partial y}{\partial z}\right)\left(\frac{\partial z}{\partial t}\right)\left(\frac{\partial t}{\partial x}\right)=(-1)^{4}=1$

Problem 3 (I0 points)

a) Together, in the same *positive* quadrant of the $x y$ plane, *very roughly* sketch the contours of $f(x, y)=x y$ for $f=0,1,2$, and without doing any calculations *very roughly* sketch the vector field $\vec{\nabla} f$ (draw about $\sim 6-9$ vectors relatively spaced out). (You may do some calculations if you need to aid yourself).

Solution:

Something vaguely resembling the following will suffice. Note: it should have been easy enough to draw arrows that are orthogonal to the contours. (6 points)

b) Find a direction, i.e., a unit vector, such that the directional derivative of $f(x, y)=x y$, at the point $\left(x_{0}, y_{0}\right)=(1,1)$ is exactly half of its max value (i.e., $\frac{1}{\sqrt{2}}$).
(Hint: any unit vector can be written as $\hat{n}=\left(p, \sqrt{1-p^{2}}\right)$ for $0 \leq p \leq 1$, also recall the quadratic formula: $a p^{2}+b p+c=0 \Rightarrow p=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$)

Solution:

Recall the directional derivative has the form: $\vec{\nabla} f \cdot \hat{n}=\|\vec{\nabla} f\|\|\hat{n}\| \cos \theta=\|\vec{\nabla} f\| \cos \theta$, which of course has a max at $\theta=0$,
so the max is $\|\vec{\nabla} f\|$ (but we already knew that since the gradient points in the direction of greatest increase). Now we want to find a unit vector that satisfies: $\vec{\nabla} f \cdot \hat{n}=\frac{1}{2}\|\vec{\nabla} f\|$
The gradient is $\vec{\nabla} f=\left.(y, x)\right|_{\left(x_{0}, y_{0}\right)=(1,1)}=(1,1)$, and let's use $\hat{n}=\left(p, \sqrt{1-p^{2}}\right)$, so that the directional derivative relation takes the form:
$\vec{\nabla} f \cdot \hat{n}=\frac{1}{2}\|\vec{\nabla} f\| \Rightarrow(1,1) \cdot\left(p, \sqrt{1-p^{2}}\right)=p+\sqrt{1-p^{2}}=\frac{1}{2} \sqrt{2}=\frac{1}{\sqrt{2}}$, (2 points) so all we need to do is find p. Isolate the square root:

$$
\begin{aligned}
& \sqrt{1-p^{2}}=\frac{1}{\sqrt{2}}-p, \text { then square both sides: } \\
& 1-p^{2}=\frac{1}{2}-\sqrt{2} p+p^{2} \\
& \Rightarrow 2 p^{2}-\sqrt{2} p-\frac{1}{2}=0 \\
& \Rightarrow p=\frac{1}{4}(\sqrt{2} \pm \sqrt{6})= \pm \sqrt{\frac{1}{16}(\sqrt{2} \pm \sqrt{6})^{2}}= \pm \sqrt{\frac{1}{2} \pm \frac{\sqrt{3}}{4}}= \pm \sqrt{1-p^{2}}
\end{aligned}
$$

(2 points)
If you found a solution for p, you may well deserve full credit. To write down an answer explicitly, we have two option: $\hat{n}=\left(-\sqrt{\frac{1}{2}-\frac{\sqrt{3}}{4}}, \sqrt{\frac{1}{2}+\frac{\sqrt{3}}{4}}\right)=\frac{1}{4}(\sqrt{2}-\sqrt{6}, \sqrt{2}+\sqrt{6})$, or, $\hat{n}=\left(\sqrt{\frac{1}{2}+\frac{\sqrt{3}}{4}},-\sqrt{\frac{1}{2}-\frac{\sqrt{3}}{4}}\right)=\frac{1}{4}(\sqrt{2}+\sqrt{6}, \sqrt{2}-\sqrt{6})$

Problem 4 (I0 points)
For each part of this problem, write all answers in the form, $a x+b y+c=0$
a) Using the 1 st order Taylor series, compute an expression for the tangent line of the graph of $y=\ln (x)$, at the point $\left(x_{0}, y_{0}\right)=(1,0)$

Solution:
$y=\ln (x) \simeq \ln \left(x_{0}\right)+\frac{1}{x_{0}}\left(x-x_{0}\right)=x-1 \Rightarrow-x+y+1=0$ (3 points)
b) Use the following parametrization of the above graph, $\vec{r}(t)=\left(e^{t}, t\right)$, to find an expression for the tangent line at the point $\left(x_{0}, y_{0}\right)=(1,0)$

Solution:
$\vec{r}\left(t_{0}\right)=\left(e^{t_{0}}, t_{0}\right)=\left(x_{0}, y_{0}\right)=(1,0) \Rightarrow t_{0}=0, \vec{r}^{\prime}\left(t_{0}\right)=(1,1) \Rightarrow \vec{n}=(-1,1)$
$\Rightarrow \vec{n} \cdot\left(x-x_{0}, y-y_{0}\right)=0 \Rightarrow-x+y+1=0$ (3 points)
c) Use the gradient of the function $g(x, y)=y-\ln (x)$, to find an expression for the tangent line to the contour $g=0$, at the point $\left(x_{0}, y_{0}\right)=(1,0)$
Solution:
$\vec{n}=\left.\nabla g\right|_{\left(x_{0}, y_{0}\right)}=\left.\left(-\frac{1}{x_{0}}, 1\right)\right|_{\left(x_{0}, y_{0}\right)}=(-1,1)$
$\Rightarrow \vec{n} \cdot\left(x-x_{0}, y-y_{0}\right)=0 \Rightarrow-x+y+1=0$ (3 points)
Notice that all of the answers are the same (1 point)

