MATH 20C - Allen - Midterm 2

Show all work. No credit might be given for unsupported answers, even if correct.

Note the magenta color is only a suggestion for the partial credit breakdown. Alternative or complex solutions must necessarily take a more personalized approach

Problem 0 (1 point)

Write your name, PID, and section number on the front of your bluebook.

Solution: Professor, 53014497, C00 (1 point)

Problem I (10 points)

a) The unit vector $\hat{A} = \left(-\frac{\sqrt{3}}{2}, \frac{1}{2}, 0\right)$, is tangent to the unit sphere given by $x^2 + y^2 + z^2 = 1$, at the point $(x_0, y_0, z_0) = \left(\frac{1}{4}, \frac{\sqrt{3}}{4}, \frac{\sqrt{3}}{2}\right)$. Find another *unit* tangent vector, \hat{B} , orthogonal to \hat{A} .

Solution:

 \hat{A} is tangent and therefore orthogonal to the normal

$$\vec{n} = \nabla \left(x^2 + y^2 + z^2 \right) \mid_{(x_0, y_0, z_0)} = (2 \, x, \, 2 \, y, \, 2 \, z) \mid_{(x_0, y_0, z_0)} = 2 \left(\frac{1}{4}, \, \frac{\sqrt{3}}{4}, \, \frac{\sqrt{3}}{2} \right).$$

(3 points)

A vector orthogonal to both \hat{A} and \vec{n} can be found with the cross product: $\vec{B} = \hat{A} \times \vec{n} = \left(\frac{\sqrt{3}}{2}, \frac{3}{2}, -1\right)$. Now we just need to normalize:

$$||\vec{B}|| = \sqrt{\vec{B} \cdot \vec{B}} = 2$$
, and therefore: $\frac{1}{||\vec{B}||} \vec{B} = \hat{B} = \left(\frac{\sqrt{3}}{4}, \frac{3}{4}, -\frac{1}{2}\right)$. Note, the negative: $-\hat{B}$ is also acceptable.

(2 points)

b) Find the point (x_0, y_0, z_0) such that the vectors $\vec{A} = (-1, 0, 8)$ and $\vec{B} = (0, -4, -16)$ are simultaneously tangent to the surface given by $x^2 - y^2 + z = 1$

Solution:

 \vec{A} and \vec{B} are tangent and therefore orthogonal to the normal: $\vec{n} = \nabla (x^2 - y^2 + z) |_{(x_0, y_0, z_0)} = (2x_0, -2y_0, 1).$ (3 points) Orthogonality implies the relations:

 $\vec{A} \cdot \vec{n} = 0$ and $\vec{B} \cdot \vec{n} = 0$, writing it out: $\vec{A} \cdot \vec{n} = -2x_0 + 8 = 0 \Rightarrow x_0 = 4$ and $\vec{B} \cdot \vec{n} = 8y_0 - 16 = 0 \Rightarrow y_0 = 2$. Now use the relation $x_0^2 - y_0^2 + z_0 = 1$ to find $z_0 = -11$, and we have: $(x_0, y_0, z_0) = (4, 2, -11)$ (2 points)

Problem 2 (10 points)

a) During lecture we saw the double product rule, $\left(\frac{\partial x}{\partial y}\right)\left(\frac{\partial y}{\partial x}\right) = 1$, and triple product rule $\left(\frac{\partial x}{\partial y}\right)\left(\frac{\partial y}{\partial z}\right)\left(\frac{\partial z}{\partial x}\right) = -1$. Use the contour, $f(x, y, z, t) = \frac{xyz}{\ln(t)} = 1$, to guess what the quadruple product rule is $\left(\frac{\partial x}{\partial y}\right) \left(\frac{\partial y}{\partial z}\right) \left(\frac{\partial t}{\partial x}\right) = ?$ That is, compute the four different derivatives and take the product (for sake of clarity write each expression resulting from a derivative only in terms of variables *x*, *y*, *z*, and be sure to not change variables until after computing the derivatives)

Solution:

Take the relation f = 1, and solve for each variable: $x = \frac{1}{yz} \ln(t), \ y = \frac{1}{xz} \ln(t), \ z = \frac{1}{xy} \ln(t), \ t = e^{xyz}$, and then take derivatives: $\frac{\partial x}{\partial y} = -\frac{1}{y^2z} \ln(t), \ \frac{\partial y}{\partial z} = -\frac{1}{z^2x} \ln(t), \ \frac{\partial z}{\partial t} = \frac{1}{xyt}, \ \frac{\partial t}{\partial x} = y z e^{xyz}$, let's re-write them without the t: $\frac{\partial x}{\partial y} = -\frac{x}{y}, \ \frac{\partial y}{\partial z} = -\frac{y}{z}, \ \frac{\partial z}{\partial t} = \frac{1}{xy} e^{-xyz}, \ \frac{\partial t}{\partial x} = y z e^{xyz}$, and now take the product and everything cancels out: $\left(\frac{\partial x}{\partial y}\right) \left(\frac{\partial y}{\partial z}\right) \left(\frac{\partial t}{\partial x}\right) = 1$ (7 points)

b) Use the contour of the *n*-variable function $f(x_1, ..., x_n) = \sum_{i=1}^n x_i = 1$, to determine the *n*-tuple product rule, $\prod_{i=1}^n \left(\frac{\partial x_i}{\partial x_{i+1}}\right) = ?$

(Note we will interpret a subscript of n+1 as 1 in the product formula as in "clock arithmetic", recall \prod means product and Σ means sum, hint: don't overthink it)

Solution:

Take the relation f = 1, and solve for each variable, let's solve for the generic $x_i = 1 - \sum_{j \neq i} x_j$. Notice that x_{i+1} appears on the right as a lonely monomial, so the derivative is easy: $\frac{\partial x_i}{\partial x_{i+1}} = -1$ for any *i*. Therefore the product rule:

 $\prod_{i=1}^{n} \left(\frac{\partial x_i}{\partial x_{i+1}} \right) = (-1)^n \quad (3 \text{ points})$

Notice that this reproduces the double product rule (n=2): $\left(\frac{\partial x}{\partial y}\right)\left(\frac{\partial y}{\partial x}\right) = (-1)^2 = 1$

And the triple product rule (n=3): $\left(\frac{\partial x}{\partial y}\right)\left(\frac{\partial y}{\partial z}\right)\left(\frac{\partial z}{\partial x}\right) = (-1)^3 = -1$

And part a) the quadruple product rule (n=4): $\left(\frac{\partial x}{\partial y}\right)\left(\frac{\partial y}{\partial z}\right)\left(\frac{\partial z}{\partial t}\right)\left(\frac{\partial t}{\partial x}\right) = (-1)^4 = 1$

Problem 3 (10 points)

a) Together, in the same *positive* quadrant of the *x y* plane, *very roughly* sketch the contours of

f(x, y) = x y for f = 0, 1, 2, and without doing any calculations *very roughly* sketch the vector field ∇f (draw about ~6-9 vectors relatively spaced out). (You may do some calculations if you need to aid yourself).

Solution:

Something vaguely resembling the following will suffice. Note: it should have been easy enough to draw arrows that are orthogonal to the contours. (6 points)

b) Find a direction, i.e., a unit vector, such that the directional derivative of f(x, y) = x y, at the point $(x_0, y_0) = (1, 1)$ is exactly half of its max value $\left(i.e., \frac{1}{\sqrt{2}}\right)$.

(Hint: any unit vector can be written as $\hat{n} = \left(p, \sqrt{1-p^2}\right)$ for $0 \le p \le 1$, also recall the quadratic formula: $ap^2 + bp + c = 0 \Rightarrow p = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$)

Solution:

Recall the directional derivative has the form: $\vec{\nabla} f \cdot \hat{n} = || \vec{\nabla} f || || \hat{n} || \cos\theta = || \vec{\nabla} f || \cos\theta$, which of course has a max at $\theta = 0$,

so the max is $||\vec{\nabla} f||$ (but we already knew that since the gradient points in the direction of greatest increase). Now we want to find a unit vector that satisfies: $\vec{\nabla} f \cdot \hat{n} = \frac{1}{2} ||\vec{\nabla} f||$

The gradient is $\vec{\nabla} f = (y, x) |_{(x_0, y_0) = (1, 1)} = (1, 1)$, and let's use $\hat{n} = (p, \sqrt{1 - p^2})$, so that the directional derivative relation takes the form:

 $\vec{\nabla} f \cdot \hat{n} = \frac{1}{2} || \vec{\nabla} f || \Rightarrow (1, 1) \cdot \left(p, \sqrt{1 - p^2} \right) = p + \sqrt{1 - p^2} = \frac{1}{2} \sqrt{2} = \frac{1}{\sqrt{2}},$ (2 points) so all we need to do is find *p*. Isolate the square root:

$$\sqrt{1-p^2} = \frac{1}{\sqrt{2}} - p, \text{ then square both sides:}$$

$$1-p^2 = \frac{1}{2} - \sqrt{2} p + p^2$$

$$\Rightarrow 2p^2 - \sqrt{2} p - \frac{1}{2} = 0$$

$$\Rightarrow p = \frac{1}{4} \left(\sqrt{2} \pm \sqrt{6}\right) = \pm \sqrt{\frac{1}{16} \left(\sqrt{2} \pm \sqrt{6}\right)^2} = \pm \sqrt{\frac{1}{2} \pm \frac{\sqrt{3}}{4}} = \pm \sqrt{1-p^2}$$

(2 points)

If you found a solution for *p*, you may well deserve full credit. To write down an answer explicitly, we have two option: $\hat{n} = \left(-\sqrt{\frac{1}{2} - \frac{\sqrt{3}}{4}}, \sqrt{\frac{1}{2} + \frac{\sqrt{3}}{4}}\right) = \frac{1}{4}\left(\sqrt{2} - \sqrt{6}, \sqrt{2} + \sqrt{6}\right)$, or, $\hat{n} = \left(\sqrt{\frac{1}{2} + \frac{\sqrt{3}}{4}}, -\sqrt{\frac{1}{2} - \frac{\sqrt{3}}{4}}\right) = \frac{1}{4}\left(\sqrt{2} + \sqrt{6}, \sqrt{2} - \sqrt{6}\right)$

Problem 4 (10 points)

For each part of this problem, write all answers in the form, ax + by + c = 0

a) Using the 1st order Taylor series, compute an expression for the tangent line of the graph of $y = \ln(x)$, at the point $(x_0, y_0) = (1, 0)$

Solution:

 $y = \ln(x) \simeq \ln(x_0) + \frac{1}{x_0}(x - x_0) = x - 1 \Rightarrow -x + y + 1 = 0$ (3 points)

b) Use the following parametrization of the above graph, $\vec{r}(t) = (e^t, t)$, to find an expression for the tangent line at the point $(x_0, y_0) = (1, 0)$

Solution: $\vec{r}(t_0) = (e^{t_0}, t_0) = (x_0, y_0) = (1, 0) \Rightarrow t_0 = 0, \vec{r}'(t_0) = (1, 1) \Rightarrow \vec{n} = (-1, 1)$ $\Rightarrow \vec{n} \cdot (x - x_0, y - y_0) = 0 \Rightarrow -x + y + 1 = 0 (3 \text{ points})$

c) Use the gradient of the function $g(x, y) = y - \ln(x)$, to find an expression for the tangent line to the contour g = 0, at the point $(x_0, y_0) = (1, 0)$

Solution: $\vec{n} = \nabla g \mid_{(x_0, y_0)} = \left(-\frac{1}{x_0}, 1\right) \mid_{(x_0, y_0)} = (-1, 1)$ $\Rightarrow \vec{n} \cdot (x - x_0, y - y_0) = 0 \Rightarrow -x + y + 1 = 0 (3 \text{ points})$ Notice that all of the answers are the same (1 point)