MATH 20C - Allen - Final

Show all work. No credit might be given for unsupported answers, even if correct.

Problem 0 (I point)

Write your name, PID, and section number on the front of your bluebook.

Problem I (IO points)

For each part of this problem, write your answer on a single plot (so 3 plots in total): very roughly sketch the contours of the following functions, and without doing any calculations, sketch also the gradient, $\vec{\nabla} f$, (draw perhaps $6-9$ arrows, not necessarily to scale).
a) $f(x, y)=x+y$, for $f=-1,0,1$

b) $f(x, y)=x^{2}-y$, for $f=-1,0,1$

b) $f(x, y)=x^{2}+4 y^{2}$, for $f=0,1,2$

(2 points correct contours, 1 point gradient orthogonal to contours)
(1 point for remembering that the gradient should point towards the contours of larger value)

Problem 2 (I0 points)

For each part of this problem, write all answers in the form, $a x+b y+c z+d=0$, for the tangent plane at the point $\left(x_{0}, y_{0}, z_{0}\right)=\left(\frac{1}{2}, \frac{1}{3}, \sqrt{2}\right)$.
a) Using the 1 st order Taylor series, compute an expression for the tangent plane of the graph of $z=f(x, y)=\sqrt{4 x^{2}+9 y^{2}}$.
$z=f(x, y)=\sqrt{4 x^{2}+9 y^{2}} \simeq f\left(x_{0}, y_{0}\right)+\frac{\partial f}{\partial x}\left(x-x_{0}\right)+\frac{\partial f}{\partial y}\left(y-y_{0}\right)=\sqrt{2}+\sqrt{2}\left(x-\frac{1}{2}\right)+\frac{3}{\sqrt{2}}\left(y-\frac{1}{3}\right)$,
now rearrange to get:
$\sqrt{2} x+\frac{3}{\sqrt{2}} y-z=0$,
optionally one could multiply the above by $\sqrt{2}$ to get:
$2 x+3 y-\sqrt{2} z=0$ (3 points)
b) Use the parametrization of the above graph, $\vec{r}(s, t)=\left(\frac{s}{2} \sin t, \frac{s}{3} \cos t\right.$, $\left.s\right)$, to find an expression for the tangent plane.
First note that: $\vec{r}\left(s_{0}, t_{0}\right)=\left(x_{0}, y_{0}, z_{0}\right) \Rightarrow\left(s_{0}, t_{0}\right)=\left(\sqrt{2}, \frac{\pi}{4}\right)$. The tangents are :
$\frac{\partial \vec{r}}{\partial s}=\left(\frac{1}{2 \sqrt{2}}, \frac{1}{3 \sqrt{2}}, 1\right)$, and $\frac{\partial \vec{r}}{\partial t}=\left(\frac{1}{2},-\frac{1}{3}, 0\right)$, which gives the normal $\vec{n}=\frac{\partial \vec{r}}{\partial s} \times \frac{\partial \vec{r}}{\partial t}=\left(\frac{1}{3}, \frac{1}{2},-\frac{1}{3 \sqrt{2}}\right)$, and we write the answer
down:
$\vec{n} \cdot\left(x-x_{0}, y-y_{0}, z-z_{0}\right)=\left(\frac{1}{3}, \frac{1}{2},-\frac{1}{3 \sqrt{2}}\right) \cdot\left(x-\frac{1}{2}, y-\frac{1}{3}, z-\sqrt{2}\right)=\frac{1}{3} x+\frac{1}{2} y-\frac{1}{3 \sqrt{2}} z=0$,
optionally one could multiply the above by 6 to get:
$2 x+3 y-\sqrt{2} z=0$ (3 points)
c) Use the gradient of the function $g(x, y, z)=z^{2}-4 x^{2}-9 y^{2}$, to find an expression for the tangent plane to the contour $g=0$.
The gradient gives the normal vector immediately: $\vec{n}=\vec{\nabla} g=(-4,-6,2 \sqrt{2})$, so we write down the answer as:
$\vec{n} \cdot\left(x-x_{0}, y-y_{0}, z-z_{0}\right)=(-4,-6,2 \sqrt{2}) \cdot\left(x-\frac{1}{2}, y-\frac{1}{3}, z-\sqrt{2}\right)=-4 x-6 y+2 \sqrt{2} z=0$,
optionally one could multiply the above by $-\frac{1}{2}$ to get:
$2 x+3 y-\sqrt{2} z=0$ (3 points)
(1 point for *not* giving up here and submitting a blank exam)w

Problem 3 (I0 points)

The region shown below is bounded by curves $y=-x$ and $y=-x^{2}+2$.

a) Write down a double integral expression for the area, with y as the inner integral and x as the outer integral. Evaluate the integral.
First we should we where the curves intersect:
$y=-x=-x^{2}+2 \Rightarrow x^{2}-x-2=(x-2)(x+1)=0 \Rightarrow(x, y)=(-1,1),(2,-2)$
The lower and upper curves for y should be simply enough, so we get:
$\int_{-1}^{2} \int_{-x}^{-x^{2}+2} d y d x=\int_{-1}^{2}\left(-x^{2}+2+x\right) d x=-\frac{x^{3}}{3}+2 x+\left.\frac{x^{2}}{2}\right|_{-1} ^{2}=-\frac{8}{3}+4+2-\frac{1}{3}+2-\frac{1}{2}=-3+8-\frac{1}{2}=\frac{9}{2}$
(4 points correct limits, 1 point correct answer)
b) Write down a double integral expression for the area, with x as the inner integral and y as the outer integral (you will need two double integrals). Evaluate the integrals.
The piecewise nature of the lower bound for x suggests that we break the region into two pieces:

So we write down a double integral for each piece:

$$
\begin{aligned}
& \int_{1}^{2} \int_{-\sqrt{2-y}}^{+\sqrt{2-y}} d x d y+\int_{-2}^{1} \int_{-y}^{+\sqrt{2-y}} d x d y \\
& =\int_{1}^{2} 2 \sqrt{2-y} d x+\int_{-2}^{1}(\sqrt{2-y}+y) d x \\
& =-\left.\frac{4}{3}(2-y)^{3 / 2}\right|_{1} ^{2}-\left.\frac{2}{3}(2-y)^{3 / 2}\right|_{-2} ^{1}+\left.\frac{y^{2}}{2}\right|_{-2} ^{1}=\frac{4}{3}-\frac{2}{3}+\frac{16}{3}+\frac{1}{2}-2 \\
& =6-2+\frac{1}{2} \\
& =\frac{9}{2}
\end{aligned}
$$

(4 points correct limits, 1 point correct answer)

Problem 4 (I0 points)

Find both the absolute max and absolute min (i.e., the coordinates and function value) within the unit disk of radius root two, i.e., $g(x, y)=x^{2}+y^{2} \leq 2$, of the function $f(x, y)=x^{2}-2 x+y^{2}+1$. (Hint: there are 3 possible extrema)

Look for unconstrained extrema on the interior of the disk:
$\vec{\nabla} f=(2 x-2,2 y)=(0,0) \Rightarrow(x, y)=(1,0)$
Look for constrained extrema on the boundary of the disk:
$\vec{\nabla} f=(2 x-2,2 y)=\lambda \vec{\nabla} g=\lambda(2 x, 2 y)$, so we have 3 equations and 3 unknowns:
$2 x-2=\lambda 2 x$,
$2 y=\lambda 2 y$,
$x^{2}+y^{2}=1$,
looking at the 2 nd equation, let's assume $y \neq 0$, so we can divide it out $\Rightarrow \lambda=1$, but then the first equation becomes $-2=0$, so our assumption that $y \neq 0$, is not valid, and therefore $y=0$. In this case, we can use the 3rd equation to find that $x= \pm \sqrt{2}$.
So we have two constrained extrema: $(x, y)=(+\sqrt{2}, 0),(-\sqrt{2}, 0)$.
Evaluating the function at each extrema:
$f(\sqrt{2}, 0)=(\sqrt{2}-1)^{2}$
$f(-\sqrt{2}, 0)=(-\sqrt{2}-1)^{2}$
$f(1,0)=0$
The absolute max must be at $(x, y)=(-\sqrt{2}, 0)$, and the absolute min must be at $(x, y)=(1,0)$.
(8 points correct extrema, 2 points correct conclusion about max/min)

Problem 5 (10 points)
Evaluate the following integral by reversing the order of integration: $\int_{0}^{1} \int_{\sqrt{y}}^{1} \sqrt{x^{3}+1} \mathrm{dx} \mathrm{dy}$

First you need to figure out the region: $x_{I}=\sqrt{y}$ and $x_{u}=1$, so we have the following:

Now we just rewrite the integral with the order reversed (the original integrand does not change!) so we get:
$\int_{0}^{1} \int_{0}^{x^{2}} \sqrt{x^{3}+1} d y d x=\int_{0}^{1} x^{2} \sqrt{x^{3}+1} d x$, use substitution: $u=x^{3}+1, d u=3 x^{2} d x$
$=\int \frac{d u}{3} \sqrt{u}=\frac{2}{9} u^{3 / 2}=\left.\frac{2}{9}\left(x^{3}+1\right)^{3 / 2}\right|_{0} ^{1}=\frac{2}{9}(2 \sqrt{2}-1)$
(7 points correct limits, 2 points substitution, 1 point correct answer)

Problem 6 (10 points)

Find the coordinates of the two extrema of f, given two constraints $g_{1}=1$ and $g_{2}=0$:

$$
\begin{aligned}
& f(x, y, z)=2 x^{2} y+z^{2} \\
& g_{1}(x, y, z)=x+y=1 \\
& g_{2}(x, y, z)=2 x-z=0
\end{aligned}
$$

Plug and chug:
$\vec{\nabla} f=\lambda_{1} \vec{\nabla} g_{1}+\lambda_{2} \vec{\nabla} g_{2}$, gives 5 equations and 5 unknowns:
$4 x y=\lambda_{1}+2 \lambda_{2}$,
$2 x^{2}=\lambda_{1}$,
$2 z=\lambda_{2}$,
$x+y=1$,
$2 x-z=0$,
Add combinations of the first 3 equations to cancel the lambda's on the right:
$4 x y-2 x^{2}-4 z=0$, and use the last 2 equations to eliminate $y=1-x$ and $z=2 x$:
$4 x(1-x)-2 x^{2}-8 x=4 x-4 x^{2}-2 x^{2}-8 x=x(12-6 x)=0, \Rightarrow x=0,2$, which can be used to find y and z :

Therefore the two extrema are at: $(x, y, z)=(0,1,0),(2,-1,4)$
(7 points for one extrema, 3 points for another)

Problem 7 (10 points)

The 3-D region show below is confined to the positive octant and bounded by two surfaces: $4 x+2 y-z=0$ and $z=1$. Compute the volume of the region with a triple integral.

Remember, it helps to look at the shadow of the volume onto the lower dimensions. The shadow on the $x y$-plane would look like:

which of course comes from the top surface $z=1$. So at $z=1$, the largest value of x is $\frac{1}{4}$. At $z=1$, the upper bound on y is $\frac{1-4 x}{2}$

So writing down the integral:

$$
\begin{aligned}
& \int_{0}^{1 / 4} \int_{0}^{1 / 2-2 x} \int_{4 x+2 y}^{1} d z d y d x \\
& =\int_{0}^{1 / 4} \int_{0}^{1 / 2-2 x}(1-4 x-2 y) d y d x \\
& =\left.\int_{0}^{1 / 4}\left(y-4 x y-y^{2}\right)\right|_{0} ^{1 / 2-2 x} d x \\
& =\int_{0}^{1 / 4}\left(\left(\frac{1}{2}-2 x\right)-4 x\left(\frac{1}{2}-2 x\right)-\left(\frac{1}{2}-2 x\right)^{2}\right) d x \\
& =\int_{0}^{1 / 4}\left(\frac{1}{2}-2 x-4 x\left(\frac{1}{2}-2 x\right)-\left(\frac{1}{2}-2 x\right)^{2}\right) d x \\
& =\int_{0}^{1 / 4}\left(\frac{1}{2}-2 x-2 x+8 x^{2}-\frac{1}{4}+2 x-4 x^{2}\right) d x \\
& =\int_{0}^{1 / 4}\left(\frac{1}{4}-2 x+4 x^{2}\right) d x \\
& =\left.\left(\frac{1}{4} x-x^{2}+\frac{4}{3} x^{3}\right)\right|_{0} ^{1 / 4} \\
& =\left(\frac{1}{16}-\frac{1}{16}+\frac{1}{3} \frac{1}{16}\right) \\
& =\left(\frac{1}{48}\right)
\end{aligned}
$$

(8 points correct limits, 2 points for good effort towards the final answer)

Problem 8 (I0 points)

The function, $f(x, y, z)=-2 x^{2}+4 x y-5 y^{2}+6 y-3 z^{2}-3$, has one extrema. Locate it and use the 2nd derivative test to determine whether the extrema is a max or min.
Unconstrained extrema have vanishing gradient:
$\vec{\nabla} f=\overrightarrow{0}$, which gives:
$(-4 x+4 y, 4 x-10 y+6,-6 z)=(0,0,0)$,
The 3rd equation tells us $z=0$, while the first equation says $x=y$, plug this into the 2 nd equation:
$4 x-10 x+6=-6 x+6=0 \Rightarrow x=1$

So our extrema is $(x, y, z)=(1,1,0)$
The Hessian matrix is: $H=\left(\begin{array}{ccc}-4 & 4 & 0 \\ 4 & -10 & 0 \\ 0 & 0 & -6\end{array}\right)$, so by computing the determinants of submatrices:
$\operatorname{det}(-4)=-4<0$
$\operatorname{det}\left(\begin{array}{cc}-4 & 4 \\ 4 & -10\end{array}\right)=24>0$
$\operatorname{det}\left(\begin{array}{ccc}-4 & 4 & 0 \\ 4 & -10 & 0 \\ 0 & 0 & -6\end{array}\right)=-144<0$
So the signs go:,,,-+- and therefore the extrema corresponds to a max.
(5 points for extrema coordinates, 3 points for Hessian, 2 points for correct conclusion)

Problem 9 (I0 points)

What is the angle between the two vectors:

1) the tangent to the curve $\vec{r}(t)=\left(t, t^{2}, t^{3}\right)$,
2) the normal to the implicit surface (pointing away from the origin), $f(x, y, z)=x+y+z-3=0$, each at the point $\left(x_{0}, y_{0}, z_{0}\right)=(1,1,1)$. You may write your answer in terms of inverse trig.

The parametrized curve satisfies: $\vec{r}\left(t_{0}\right)=\left(x_{0}, y_{0}, z_{0}\right) \Rightarrow t_{0}=1$.
The first vector is a tangent to the curve, so $\frac{\overrightarrow{d r}}{d t}=(1,2,3)$.
The second vector is normal to the surface, which we can get with the gradient: $\vec{n}=\vec{\nabla} f=(1,1,1)$.
The angle between two vectors is given by:
$\theta=\cos ^{-1} \frac{\vec{\nabla} f \cdot \frac{\vec{r} r}{d t}}{\|\vec{\nabla} f\|\left\|\frac{\overrightarrow{d r}}{d t}\right\|}=\cos ^{-1} \frac{(1,1,1) \cdot(1,2,3)}{\sqrt{1^{2}+1^{2}+1^{2}} \sqrt{1^{2}+2^{2}+3^{2}}}=\cos ^{-1} \frac{6}{\sqrt{3} \sqrt{2} \sqrt{7}}=\cos ^{-1} \sqrt{6 / 7}$
(7 points for calculating the vectors correctly, 3 points for correct answer)

Problem IO (I0 points)

The temperature of a region is given by $T(x, y)=\sqrt{\frac{x}{y}}$
a) How does the temperature change at the point $\left(x_{0}, y_{0}\right)=(1,2)$ in the direction $\hat{n}=\left(\frac{3}{5}, \frac{4}{5}\right)$?

The directional derivative is

$$
\vec{\nabla} T \cdot \hat{n}=\left.\left(\frac{1}{2} x^{-1 / 2} y^{-1 / 2},-\frac{1}{2} x^{1 / 2} y^{-3 / 2}\right)\right|_{(x, y)=(1,2)} \cdot\left(\frac{3}{5}, \frac{4}{5}\right)=\left(\frac{1}{2 \sqrt{2}},-\frac{1}{4 \sqrt{2}}\right) \cdot\left(\frac{3}{5}, \frac{4}{5}\right)=\frac{1}{10 \sqrt{2}}
$$

b) How does the temperature change at the point $\left(x_{0}, y_{0}\right)=(1,2)$ according to an observer walking along the path $\vec{r}(t)=\left(t^{3}, 2 t^{2}\right)$?
The path satisfies $\vec{r}\left(t_{0}\right)=\left(x_{0}, y_{0}, z_{0}\right) \Rightarrow t_{0}=1$. The chain rule says $\frac{d T}{d t}=\vec{\nabla} T \cdot \frac{\overrightarrow{d r}}{d t}=\left(\frac{1}{2 \sqrt{2}},-\frac{1}{4 \sqrt{2}}\right) \cdot(3,4)=\frac{1}{2 \sqrt{2}}$
c) What is the ratio of answers to part b and a ? What is the speed of the observer (i.e., the length of the tangent vector $\left.\frac{\overrightarrow{d r}}{d r}\right)$?
part $\mathrm{b} /$ part $\mathrm{a}=\frac{1}{2 \sqrt{2}} / \frac{1}{10 \sqrt{2}}=5, \quad\left\|\frac{\mathrm{dr}}{\mathrm{dr}}\right\|=\|(3,4)\|=5$, of course the temperature change for the observer depends on both how the temperature changes in space *and* the rate at which the observer is traversing space.
So $\frac{d T}{d t}=$ speed * directional derivative.
(4 points for directional derivative, 4 points for chain rule, 2 points for correct ratio)

